On the Gallanyls $R^*_3Ga_2$ and $R^*_4Ga_3$ As Well As Gallanides $R^*_3Ga_2$ and $R^*_4Ga_3$ ($R^* = SitBu_3$) — Syntheses, Characterization, Structures [‡]

Nils Wiberg,*[a] Thomas Blank,[a] Kerstin Amelunxen,[a] Heinrich Nöth,[a][‡‡] Jörg Knizek,[a][‡‡] Tassilo Habereder,[a][‡‡‡] Wolfgang Kaim,[b][‡‡‡] and Matthias Wanner[b][‡‡‡]

Keywords: Anions / EPR spectroscopy / Gallium / Radicals / Silicon / X-ray structural analyses

The reduction of black-blue tris(supersilyl)digallanyl $[R_2^*Ga-GaR_1^*]$ ($R_3^*=SitBu_3=Supersilyl$) in organic solvents with Na, $NaC_{10}H_8$, or NaR^* leads to deep-red sodium tris(supersilyl)digallanide-THF(1/3) NaGa₂R*₃×3THF [R*2Ga-GaR*Na(THF)3], which transforms in the presence of 18-crown-6 into deep-blue sodium tetrakis(supersilyl)trigallanide-18-crown-6(1/1)-THF(1/2) $[Na(18-C-6)(THF)_2]^{+-}$ [R*2Ga-GaR*-GaR*]-. The oxidation of the latter anion with R*Br or TCNE as well as the reaction of the digallanyl R*3Ga2 with R*Br leads to deep-green tetra(supersilyl)cyclotrigallanyl [...R*Ga-GaR*_2-GaR*...]. The latter radical thermolizes at 100 °C to dark-violet tetrakis(supersilyl)-tetrahedro-tetragallane R*4Ga4 besides the digallanyl R*3Ga2. This is also prepared from NaR* and GaCl $_3$ or R* $_2$ GaCl, as well as by oxidation of $R^{\star}{}_{3}Ga_{2}^{-}\text{,}$ and itself thermolizes with formation of the tetrahedrane $R^*_4Ga_4$. According to X-ray

structure analyses of the mentioned compounds, the Ga–Ga bond of the digallanide NaGa₂R*₃×3THF (NMR spectroscopically observed) is comparably short (2.380 Å), approaching a bond order of 2. In fact, it is distinctly shorter than the Ga–Ga bond (2.420 Å) in the digallanyl R*₃Ga₂ (EPR spectroscopically observed). The Ga atoms of the trigallanyl R*₄Ga₃· (EPR spectroscopically observed) are located at the corners of a triangle with two shorter R*₂Ga–GaR* sides (2.527 Å) and a comparably longer R*Ga–GaR* basis (2.879 Å). The mean value of the two Ga–Ga bonds in the trigallanide R*₄Ga₃- (NMR spectroscopically observed) is as long (2.53 Å) as the short Ga–Ga bonds in R*₄Ga₃·. The anion shows an intramolecular CH₃····Ga contact (C–Ga 2.10 Å) between one peripheral methyl group of the R*₂Ga entity and the anionic Ga atom in [R*₂Ga–GaR*–GaR*]⁻.

Introduction

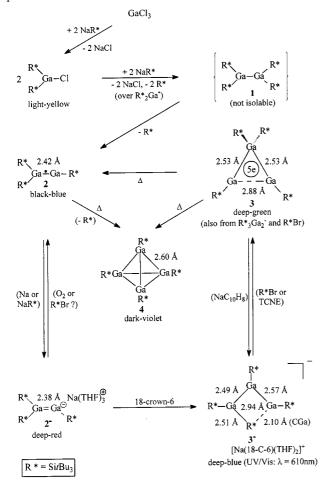
As recently reported, [1,2] the reaction of supersilylsodium NaR^* ($R^* = SitBu_3 = supersilyl$) with aluminium trihalides AlX_3 (X = Cl, Br) in alkanes leads, at room temperature, via isolable bis(supersilyl)aluminium halides R*2AlX to tetrakis(supersilyl)dialane R*2Al-AlR*2 (cf. Scheme 1). Thereby, NaR* reacts with R*2AlCl by formation of NaCl as well as of radicals R* and R*2Al. For steric reasons, only dimerization of R* and R*Al is possible, but no recombination of both radicals under formation of R*3Al. The mentioned dialane R*₄Al₂ thermolizes in heptane at 80 °C in a reversible reaction to bis(supersilyl)alanyl R*2Al in low equillibrium concentration ($R_4^*Al_2 \stackrel{\rightarrow}{=} 2 R_2^*Al$). In an irreversible reaction it thermolizes to tris(supersilyl)dialanyl R*₃Al₂ as well as to tetrakis(supersilyl)cyclotrialanyl R*₄Al₃ and to tetrakis(supersilyl)-tetrahedro-tetraalane R*₄Al₄ (Scheme 1).^[2] Possibly, R*₄Al₃ forms by a reaction

Scheme 1. Syntheses, reactions, colors, Al-Al distances of dialane $R^*_4Al_2$, alanyls $R^*_3Al_2$ and $R^*_4Al_3$ as well as tetrahedrane $R^*_4Al_4$ [equations in part not exactly formulated; R^* dimerizes to $(R^*)_2$ or – at higher temperatures – transforms into R^*H)

Department Chemie der Universität München,

[‡‡] X-ray structure analyses.

of the monoalanyl R^*_2Al with the dialanyl $R^*_3Al_2$. The cyclotrialanyl $R^*_4Al_3$ itself transforms slowly into $R^*_3Al_2$ and $R^*_4Al_4$ [1] (cf. Scheme 1).


AlA3 (X = Cl, Br) $2 \frac{R^*}{Al} - 2 \frac{1}{2} \frac{1}{2}$

Compounds of Silicon and Homologues, 145. – Supersilyl Compounds of Boron and Homologues, 14. – Part 144 and Part 13: A. Donchev, A. Schnepf, G. Stößer, E. Baum, H. Schnöckel, T. Blank, N. Wiberg, *Chem. Eur. J.*, in press.

Butenandtstraße 5–13 (Haus D), 81377 München, Germany Institut für Anorganische Chemie der Universität Stuttgart, Plattenwaldring 55, 70550 Stuttgart, Germany

^[‡‡‡] ESR studies.

On the other hand, tetrakis(supersilyl)digallane $R*_2Ga-GaR*_2$ (1) thermolizes at much lower temperature than the dialane. Therefore, the reaction of gallium trichloride with supersilylsodium NaR* in heptane at room temperature leads, via isolable bis(supersilyl)gallium chloride $R*_2GaCl$, not at all to the digallane 1, which is unknown to date, but directly to tris(supersilyl)digallanyl $R*_3Ga_2$ (2) (Scheme 2).^[3] The latter radicals thermolize in heptane at 100 °C exclusively to tetrakis(supersilyl)-tetrahedro-tetragallane $R*_4Ga_4$ (4) (cf. preliminary communication^[4]). No tetrakis(supersilyl)cyclotrigallanyl $R*_4Ga_3$ (3) is formed in this case. Therefore, we tried to prepare the cyclotrigallanyl 2 by another route from the digallanyl 2. These studies are presented here.

Scheme 2. Syntheses, reactions, colors, and Ga-Ga distances of gallanyls $R^*{}_3Ga_2$: (2) and $R^*{}_4Ga_3$: (3), gallanides $R^*{}_3Ga_2$ - (2⁻) and $R^*{}_4Ga_3$ - (3⁻) as well as tetrahedrane $R^*{}_4Ga_4$ (4) [equations in part not exactly formulated; R^* dimerizes to $(R^*)_2$ or – at higher temperatures – transforms into R^*H]

Results

Syntheses and Properties of $R^*_3Ga_2$, $R^*_4Ga_3$, $R^*_3Ga_2$, and $R^*_4Ga_3$

According to Scheme 2, the digallaryl R*₃Ga₂· (2) can be reduced in pentane, benzene, or tetrahydrofuran (THF)

with sodium in the presence or absence of naphthalene, or with supersilylsodium NaR*×2THF (NaR* \rightarrow Na⁺ + R* + e⁻) to sodium tris(supersilyl)digallanide-tetrahydrofuran(1/3) [NaGa₂R*₃×3THF, **2**⁻; cation Na(THF)₃⁺]. In fact, one starts with bis(supersilyl)gallium chloride R*₂GaCl, which is easily reduced by NaR* or by NaC₁₀H₈ in THF. The digallanide **2**⁻ forms deep-red, air- and moisture-sensitive crystals, which give red solutions in alkanes and benzene, but a blue solution in tetrahydrofuran (THF). The digallanide **2**⁻ reacts in pentane with Me₃SiCl at low temperature with formation of light-red tris(supersilyl)(trimethylsilyl)digallane [R*₂Ga-GaR*(SiMe₃); evidence of the existence of a digallanide; first tetrasilyldigallane to date].

If 18-crown-6 is added to a deep-red solution of 2⁻ in benzene, the color of the reaction mixture immediately changes to dark-blue. In fact, 2 reacts according to Scheme 2 to give dark-blue, air- and moisture-sensitive sodium tetrakis(supersilyl)trigallanide-18-crown-6(1/1)tetrahydrofuran(1/2) $\{[Na(18-C-6)(THF)_2]^+[Ga_3R*_4]^-\},$ which is soluble in benzene and THF, but insoluble in alkanes (for X-ray structure analysis see below). Possibly, a transfer of supersilylgallium R*Ga between two digallanide anions 2⁻ takes place as described by $2R*_3Ga_2^- \rightarrow$ $R^*{}_2Ga^- + R^*{}_4Ga_3^-$, whereby the monogallanide R*2Ga may transfer another supersilylgallium by R*2Ga + $R\ast_3 G a_2^- \rightarrow R\ast^-$ + $R\ast_4 G a_3^-$ (R \ast^- is unstable in the presence of 18-C-6 to produce R*H).^[5]

The trigallanide R*₄Ga₃⁻(3⁻) is oxidized in benzene with supersilyl bromide (R*Br + $e^- \rightarrow R^* + Br^-$) or tetracyanoethylene (TCNE + $2e^- \rightarrow TCNE^{2-}$) to deepgreen air- and moisture-sensitive, tetrakis(supersilyl)cyclotrigallanyl (R*4Ga3; 3), soluble in organic media. The latter is itself reduced by sodium naphthalenide to R*4Ga3- (cf. Scheme 2; for EPR spectrum and X-ray structure analysis see below). Unexpectedly, R*₄Ga₃. (3) besides (R*)₂ is also very simply obtained by reaction of the digallanide NaGa₂R*₃×3THF {Na(THF)₃+ 2^- } in pentane with supersilyl bromide R*Br. As the radical 3 is formed faster from R*3Ga2 (2-) and R*Br than from R*₄Ga₃⁻ (3⁻) and R*Br, the former reaction obviously does not proceed via anion 3-, but may involve the radical R*₃Ga₂· (2), which eventually reacts with 3⁻ by transfer of R*Ga (cf. production of 3⁻ from 2⁻).

Radical R*₄Ga₃· (3) thermolizes at 45 °C slowly (within 1 d) with formation of R*₃Ga₂·, besides R*₄Ga₄ (Scheme 2, cf. thermolysis of R*₄Al₃·).^[6] The black-blue, air- and moisture-sensitive, in organic media soluble tris(supersilyl)digallanyl R*₃Ga₂· (2) is also synthesized in alkanes from GaCl₃ and NaR*, or from R*₂GaCl and NaR* as well as Na,^[3] or from R*₃Ga₂· (2⁻) by oxidation. Formally, the radical 3 decomposes with elimination of supersilylgallium R*Ga into the digallanyl 2, whereby R*Ga tetramerizes. Because the digallanyl 2 itself decomposes at 100 °C in heptane to dark-violet air- and moisture-sensitive, in organic media soluble tetrakis(supersilyl)-*tetrahedro*-tetragallane (R*₄Ga₄; 4) and (R*)₂,^[4] the trigallanyl 3 finally decomposes in pentane at 100 °C exclusively into (R*)₂ and thermostable 4

(almost no decomposition in solution at 100 °C; decomposition of the solid at the melting point 322 °C).

Characterization of $R^*_3Ga_2$, $R^*_4Ga_3$, $R^*_3Ga_2$, and $R^*_4Ga_3$

The ²⁹Si NMR signals of digallanide [R*₂Ga-GaR*]⁻[**2**⁻; the Ga-Na bond in NaGa₂R*₃×3THF is according to the formulation Na(THF)₃+ **2**⁻ undoubtedly ionic^[5]] and trigallanide [R*₂Ga-GaR*-GaR*]⁻ (**3**⁻) appear at low field [δ = 37.1/54.3 in the first case (area ratio ca. 2:1) and δ = 53.5/42.0/42.3 in the second case (area ratio 2:1:1)]. The ²⁹Si NMR signals of the R* groups in the digallane R*₂Ga-GaR*(SiMe₃) show comparable shifts (δ = 48.80/44.80 for 2 Si*t*Bu₃/1 Si*t*Bu₃). It is worth mentioning in this context that the ²⁹Si NMR signals of alkali metal supersilanides MR* and of supersilyl halides R*Hal appear in the same region at δ = 30-40.^[5]

On the other hand, the radicals $R^*_3Ga_2$ (2) and $R^*_4Ga_3$ (3) — not observed in NMR — are characterized by EPR. As the EPR spectrum of 2 has been discussed in detail in a preliminary publication,^[3] the following remarks refer only to the EPR spectrum of 3. Freshly dissolved in cyclohexane, 3 exhibits an unresolved, unsymmetrical EPR signal of $H_T \approx 20$ mT total width at g = 1.998. The lack of resolution and the asymmetry point to insufficient averaging of anisotropic contributions to the g and A (hyperfine) tensors. Similar, but less pronounced effects were observed for the paramagnetic systems $R^*_3Ga_2$ (2)^[3] and R'_4Ga_2 —with $R' = CH(SiMe_3)_2$.^[6a] In comparison with $R^*_4Al_3$ [1] (g = 2.0053), the gallium analogue exhibits a g factor lower than g(electron) = 2.0023, which agrees^[7] with the presence of

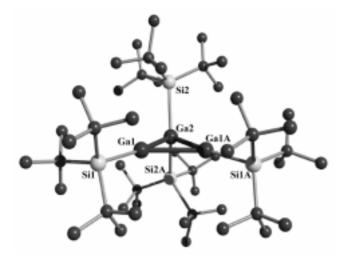


Figure 1. Structure of R*4Ga3 (3) in the crystal; atom numbering used (SCHAKAL plot; H atoms omitted for clarity); selected distances [A] and angles [°] with standard deviations: Ga1-Ga2 2.5267(7), Ga1-Ga1A 2.879(1), Ga1-Si1 2.513(1), Ga2-Si2A 2.536(1), Ga2-Si2 2.536(1), Si-C (mean value) 1.98; Sil-Gal-Ga2 169.88(4), Sil-Gal-GalA, 134.83(3), Ga2-Ga1-Ga1A 55.27 (2) [angles sum at Ga1/Ga1A 359.98], 69.47(3), Ga1-Ga2-Ga1A Ga1-Ga2-Si2A 106.77(4). 108.85(3), Ga1A-Ga2-Si2A Ga1-Ga2-Si2 108.85(3), Ga1A – Ga2 – Si2 106.77(4), Si2A – Ga2 – Si2 136.30(7), C – Si – Ga (mean value) 108.62, C – Si – C (mean value) 111.99; Si2 – Ga2 – Ga1 – Si1 81.97, Si1 – Ga1 – Ga1A – Si1A 1.67

low-lying unoccupied orbitals. On the other hand, a glassy frozen solution of 3 at 110 K in cyclohexane produces a broad ($H_{\rm T}=55$ mT), partially resolved EPR spectrum. While the signal could not be unambiguously analyzed due to overlapping g components in the X band, the large spectral width confirms the sizeable g and A anisotropy (69 Ga:I = 3:2, 60.1% natural abundance, isotropic hyperfine constant $a_0=435.68$ mT; 71 Ga:I = 3:2, 39.9%, $a_0=553.58$ mT^[8]). The width of the low-temperature spectrum is in agreement with $H_{\rm T}=15.0$ mT for R* $_4$ Al $_3$ [11 (27 Al:I = 5:2, 100%, $a_0=139.55$ mT^[8]). On prolonged standing or warming, the solution of 3 produces a new EPR signal that could be identified as that of $2.^{[3]}$

Structures of R*₃Ga₂, R*₄Ga₃, R*₃Ga₂, and R*₄Ga₃

The structures of the trigallanyl $R*_4Ga_3$ (3), the digallanide $NaGa_2R*_3\times 3THF$ [2⁻; cation $Na(THF)_3^+$], and the trigallanide $[Ga_3R*_4]^-$ [3⁻; cation $Na(18\text{-C-6})(THF)_2^+$] are shown in the Figures 1, 2, and 3, respectively, together with selected bond lengths and angles. The structure of the digallanyl $R*_3Ga_2$ (2) has already been published.^[3]

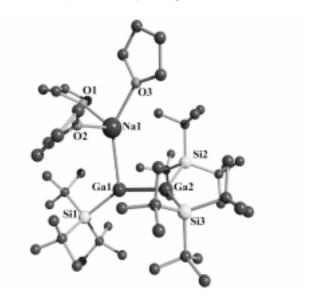


Figure 2. Structure of $NaGa_2R^*_3\times 3THF$ [$Na(THF)_3^+\cdot 2^-$] in the crystal; atom numbering used (SCHAKAL plot; H atoms omitted for clarity); selected distances [A] and angles [°] with standard deviations: Ga1-Ga2 2.3797(6), Ga1-Si1 2.500(1), Ga1-Na1 3.205(2), Ga2-Si2 2.517 (1), Ga2-Si3 2.519(1), Na1-O3 2.316(4), Na1-O1 2.337(5), Na1-O2 2.404(5), Si-C (mean value) 1.96; 142.41(4), Ga2-Ga1-Si1 Ga2-Ga1-Na1 Sil-Gal-Nal 126.14(5) [angles sum at Ga1 359.941, Ga1-Ga2-Si3 Ga1-Ga2-Si2 112.09(3), 112.59(3), Si2-Ga2-Si3 133.72(4) [angles sum at Ga2 358.34], O3-Na1-O1 91.3(2), O3-Na1-O2 88.1(2), O1-Na1-O2 97.6(2), O3-Na1-Ga1 112.9 (1), O1-Na1-Ga1 108.2 (1), O2-Na1-Ga1 145.7 (1), C-Si-Ga (mean value) 109.77. 91.3(2), 97.6(2), C–Si–C (mean value) 109.1; Si1–Ga1–Ga2–Si2/Si3 100.43/ –91.99, Na1–Ga1–Ga2–Si2/Si3 82.52/–85.06

As stated elsewhere, [3] the structure of tris(supersilyl)digallanyl ($R*_3Ga_2$, 2) is comparable with the structure of $R*_3Al_2$. Both radicals show an almost planar Si_2E-ESi skeleton from which only the Si atom bonded to the biva-

lent E centre deviates by few degrees in line with the E-E vector (E = AI/Ga: 5.1/10°; the E-E-Si plane stands almost orthogonal to the Si-E-Si plane). In both cases, the E-E distance is comparatively short (cf. Schemes 1 and 2). This points to an E-E bonding order greater than one, whereby the shortening of the E-E bond length by going

(b) (c)

from $R^*_3Al_2$ to $R^*_3Ga_2$ may be due to a decrease of the radius by going from Al atoms to Ga atoms. According to this, and in agreement with EPR studies, [3,9] the radicals $R^*_3E_2$ contain sp^2 - and sp-hybridized E atoms, which are connected via two-electron δ - and one-electron π -bonds. This fact is best described by the formulation $R^*_2E \dot{=} ER^*$.

On the other hand, the structure of tetrakis(supersilyl)trigallanyl (R*₄Ga₃, 3), shown in Figure 1, is in many respects different from the structure of R*₄Al₃·[1] – except for the Si atoms of the 4 R* groups which occupy in both radicals the corners of a distorted tetrahedron: In R*4Al3 the three Al atoms occupy the corners of a triangle with two longer but unequal R*2AlAlR* sides and a shorter R*AlAlR* basis (cf. Scheme 1), whereas in R*₄Ga₃. (3) the three gallium atoms form a triangle with two shorter and equal long R*2GaGaR* sides and a longer R*GaGaR* basis (cf. Scheme 2). These structural data suggest that the R*Al groups are more weakly bonded to R*2Al than to each other, whereas the opposite holds for the R*Ga groups. In addition, the R*₂Al plane in R*₄Al₃ stands not orthogonal to the E₃ plane and one R* substituent of the R*AlAlR* group does not lie in the E₃ plane. This is unlike the R*₂Ga plane in R*4Ga3 (orthogonal to E3) and the R* substituents of the R*GaGaR* group (both in plane). Intuitively, one might argue that the observed geometry of both radicals looks as if cyclisation of the compounds catena- $R^*_2E-ER^*-ER^*$ (E = Al, Ga), which are homologues of the mentioned radicals catena-R*2E-ER* (see above), stopped half way on the reaction coordinate in the case of R*4Al3, but is finished in the case of R*₄Ga₃. In the course of this (hypothetic) cyclisation of catena-R*2E-ER* ER* the R*E-ER* bond became weaker and the connection between R^*_2E and ER^* – not existing in *catena*-R*₄E₃' – stronger.

Figure 3. Structure of R*₄Ga₃⁻ (3⁻) in the crystal, seen in two directions [(a) and (b)], and of Na(18-C-6)(THF)₂⁺ [(c)]; atom numbering used [SCHAKAL plot; H atoms in (a) and (b), and some tBu groups in (b) omitted for clarity; the dotted line represents the intramolecular CH₃···Ga contact]; selected distances [A] and angles [°] with standard deviations: anion: Ga1-Ga3 2.494 (1), Ga1-Ga2 2.569 (2), Ga2···Ga3 2.935(2), Ga1-Si1 2.485(3), Ga2-Si3 2.513(3), Ga2-Si2 2.520(3), Ga3-Si4 2.486(3), Ga3···C26 2.10, Si-C (mean value) 1.96; Si1-Ga1-Ga3 137.89(9), Si1-Ga1-Ga2 151.09(8); Ga3-Ga1-Ga2 70.83(5) [angles sum at Ga1 359.81], Si3-Ga2-Si2 133.52(11), Si3-Ga2-Ga1 105.83(8), Si2-Ga2-Ga1 118.76(8) [angles sum at Ga2 358.11], Si4-Ga3-Ga1 136.28(8), Ga1-Ga3-C26 105.6(3), Si4-Ga3-C26 112.7(3) [angles sum at Ga3 354.6], Si4-Ga3-Ga2 140.19(8), Ga1-Ga3-Ga2 55.77(4), Ga1-Ga2-Ga3 53.40(4), C-Si-Ga (mean value) 109.39, C-Si-C (mean value) 109.5; Si2(Si3)-Ga2-Ga1-Si1 67.77/98.65, Si4-Ga3-Ga1-Ga2 80.77; cation: Na-O(THF) (mean value) 2.31, Na-O(18-C-6) (mean value) 2.76; O-Na-O(THF) 179.24, O-Na-O(18-C-6) (mean value) 2.76; O-Na-O(THF) 179.24, O-Na-O(18-C-6) (mean value) 60.53, angles sum at O(THF) 359.78, angles sum at O(18-C-6) 343.40; the O₆ ring of 18-C-6 is something corrugated

If the R^*_2E group provides one and each R^*E group two electrons for the E_3 framework (Al, Ga), there are 5 electrons available for the E_3 cluster in $R^*_4E_3$ or $^5/_3=1.67$ electron per E-E bond as compared with 3 electrons available for the E_2 group in $R^*_3E_2$. As a result, the mean value of the E-E distances is evidently larger in $R^*_4E_3$ (2.74 Å for $R^*_4Al_3$, 2.65 Å for $R^*_4Ga_3$) than in $R^*_3E_2$ (2.53 Å for $R^*_3Al_2$, 2.42 Å for $R^*_3Ga_2$). Altogether one might expect that the groups R^*Ga in $R^*_4Ga_3$ are connected with R^*_2Ga by two-electron bonds, and among one another by a one-electron bond.

The structure of sodium tris(supersilyl)digallanidetetrahydrofuran(1/3) [NaGa₂R*₃×3THF, 2^- ; cation: Na(THF)₃⁺], shown in Figure 2, resembles that of the radical R*₃Ga₂' (2; see above). Thus, in both molecules the Si_2GaGa groups are nearly planar (angles sum at Ga for 2^{-} / 2 358.4/359.7°). The same holds for the GaGaNaSi group of the anion 2^- (angles sum at $Ga 360.0^\circ$), whereas the Na center itself is coordinated, distorted tetrahedrally by one Ga and three O atoms (the latter from THF). Moreover, the planes Si-Ga-Si and Ga-Ga-Si are almost orthogonal arranged not only in the anion 2⁻ but also in the radical 2. The Ga-Ga-Si group in 2^- is, however, far away from being linear (angles for $2^{-1}/2$ 142.4°/170.0°). This is obviously a consequence of the Na center, which in addition coordinates the Ga atom in 2⁻. Certainly, the Ga-Na bond, which runs nearly orthogonal to the Ga-Ga bond (angle Ga-Ga-Na 91.4°) is highly ionic. Therefore, the free electron pair at the anionic Ga atom of 2⁻ is available for a π -bond, leading – according to the formulation $[R*_2Ga-GaR* \rightleftarrows R*_2Ga=GaR*]^-$ - to a comparable short central bond of the anion (Ga-Ga distance for 2⁻/2 2.38/2.42), approaching a bond order of 2 (Ga=Ga double bond length ca. 2.32 A; cf. Table 1).

In a way, the tris(supersilyl)digallanide R*₃Ga₂⁻ (2⁻) and tetrakis(supersilyl)trigallanide (R*₄Ga₃⁻) 3⁻, the structure of the latter is now discussed (Figure 3, a), play the role of the second and third member in a homologous row of anions: R*₂Ga⁻, R*₂Ga-GaR*⁻, R*₂Ga-GaR* -GaR*-, R*2Ga-GaR*-GaR*-GaR*- {for the structure of $[Na(18-C-6)(THF)_2]^+$ cf. Figure 3 (c). In fact, the structure of the trigallanide 3⁻ differs markedly from the structure of the digallanide 2 in showing an intramolecular H contact between one peripheral methyl group of the R*2Ga entity and the anionic Ga atom in [R*2Ga-GaR* -GaR*] (cf. Scheme 2). As the contact between the C atom of the mentioned methyl group and gallium atom is also very short (2.10 Å; normal Ga-C single bond lengths 1.99-2.02 Å),^[9] it seems not out of question that in addition to H···Ga contacts C···Ga contacts must be taken into account. The latter possibility is in good agreement with a comparable long R*₂Ga) R*Ga-GaR* distance (2.57 A), pointing to a Ga-Ga single bond (cf. Ga-Ga bond length of 2.38 Å in R*₂Ga-GaR*⁻). Each of the three Ga atoms in R*₄Ga₃⁻ (3⁻) are nearly planar coordinated by adjacent atoms [angles sum at Ga for Si₂GaGa/GaGaSiGa/GaGaSiC 358.1/359.9/354.8°; the angles between the mentioned planes are 82.89/76.20°; cf. Figure 3 (b)]. The Ga atoms in 3^- themselves occupy the corners of a triangle with two shorter sides and a much longer basis, which certainly do not represent any chemical bond (cf. Scheme 2). In regard to the central Ga_3 group in $[R^{*(2)}R^{*(3)}Ga-GaR^{*(1)}-GaR^{*(4)}]^-$ the supersilyl groups $R^{*(1)}/R^{*(2)}/R^{*(3)}/R^{*(4)}$ lie – according to Figure 3 (b) – in/below/above/below the Ga_3 plane; thereby the Si atoms of the 4 R^* groups form a distorted tetrahedron.

The one-electron reduction of the trigallanyl $R^*_4Ga_3$ (3) to $R^*_4Ga_3$ (3⁻) is connected with a structural change (anticyclization process), whereby the bonds $R^*_2Ga-GaR^*/$ according to Figure 3 (b) – in/below/above/below the Ga_3 Scheme 2). Altogether, the mentioned reduction leads to a shortening of the mean Ga-Ga distances [(2.53 + 2.53 + 2.88):3 = 2.65 Å in 3 and (2.49 + 2.57):2 = 2.53 Å in 3⁻], but the Ga-Ga distances in 3⁻ are distinctly longer than in 2⁻. This could be due to the fact that in the former the free electron pair contacts a methyl group $[-CH_3\cdots:Ga< \rightleftarrows -CH_2-GaH<]$, whereas in the latter the free electron is involved in the Ga-Ga bond $[>Ga-Ga-\rightleftarrows >Ga-Ga-]$. On the other hand, the longer Ga-Ga bonds perhaps are simply due to the fact that the extra electron is delocalised over three instead of over two Ga centers such as in 2⁻.

Concluding Remarks

The gallium cluster compounds discussed here are further examples of many known compounds with two connected Ga atoms and of some known compounds with three connected Ga atoms.^[6,10-25] All these clusters are shown in Table 1, together with their colors and geometries [the bond orders are determined from the single and double Ga-Ga bond lengths (2.52 and 2.32 Å), which themselves are twice the single and double bond radius of Ga^[26]].

According to Table 1, the Ga-Ga bond lengths of organyl and certainly also of silyl-substituted digallanes >Ga-Ga< with a two-electron Ga-Ga bond (bond order 1) and tricoordinated Ga atoms span the region 2.48-2.54A. Clearly, the Ga-Ga distances of the discussed digallanide $R_3Ga_2^-$ (R = R*) or digallanediide $R_2Ga_2^{2-}$ [R = 2,6- $(Tip)_2C_6H_3$] as well as of the digallaryl R_3Ga_2 (R = R*) or the radical anion $R_4Ga_2^{-}$: [R = Tip, (SiMe₃)₂CH], which formally derive from R₄Ga₂ by removing one or two R⁺ cations or one R' radical as well as introducing one electron, are distinctly shorter, due to the presence of more than two electrons per Ga-Ga bond, leading to bond orders of 1.5 to 2, respectively (cf. Table 1). Obviously, substitution of the organyl substituents in R₄Ga₂ by more electronegative groups, shortens the Ga-Ga bonds, as is shown for (2,4,6tBu₃C₆H₂)₂Ga₂Cl₂ (Table 1). The yet unknown monomeric tetrahalides Ga₂Hal₄ should have – due to *electronic effects* of 4 halogen atoms – very short Ga-Ga bond lengths. The comparable long Ga-Ga bond in R₄Ga₂ with four electronegative substituents $R = 2,2,4,4-Me_4C_5H_6N$ probably is due to steric effects. On the other hand, addition of two donors to digallanes > Ga - Ga < with formation of tetracoordinated Ga atoms certainly lengthens the Ga-Ga bonds.

Table 1. Compounds with clusters of two and three Ga atoms [R = organyl, silyl, aminyl. X = halogen; D = donor; Fo = formula; CN = coordination number of Ga atoms (including Ga-bonded counter ions); $\tau = \text{torsion angle R-Ga-Ga-R}$; BL = Ga-Ga bond length; BO = Ga-Ga bond order, determined from Ga-Ga single bond (2.52 Å) and double bond (2.32 Å); Ref. = references (here = this publication)]

Fo	Ga cluster co R/X/D ^[a]	mpounds Color ^[b]	CN	τ ^[c]	BL [Å]	BO (ca.)	Ref.
		Two Ga a	itoms				
R ₄ Ga ₂	Disyl	yellow	3	4.9°	2.54	1	[10]
4 - 1.2	Pip	lyellow	3	31°	2.53	1	[11]
	Tip	vellow	3	43.8°	2.51	1	[12]
	Mes_F	?	3	?	2.48	1	[13,14]
	3R*/SiMe ₃	red	3	?	?	?	here
	[d]	colorl.	4?	?	?	?	[15]
$R_2Ga_2X_2$	Mes*/Cl	colorl.	3	0°	2.42	1.5	[16]
2 2 2	R'/Cl	colorl.	4	e	2.50	1	[17]
	R'/Br	colorl.	4	e	2.51	1	[17]
$Ga_2X_4D_2$	I/NEt ₃	colorl.	4	st	2.50	1	[18]
- 1.2 4 2	I/PEt ₃	colorl.	4	st	2.44	1.5	[18]
	Cl/Diox	colorl.	4	st	2.41	1.5	[19]
	Br/Diox	colorl.	4	st	2.40	1.5	[19]
	Cl/Pv	colorl.	4	st	2.50	1.5	[20]
	Br/Py	colorl.	4	st	2.48	1.5	[20]
$R_2Ga_2X_4{}^{2-}$	R'/Br	colorl.	4	st	2.50	1	[17]
2 2 4	R'/I	yellow	4	st	2.48	1	[17]
$Ga_2X_6^{2-}$	C1	colorl.	4	st	2.43	1.5	[21]
[f]	Br	colorl.	4	st	to ^[e]	to	to
	I	vellow	4	st	2.39	1.7	[23]
R_3Ga_2 (2)	R*	dblue	3+2	90°	2.42	1.5	here
$R_3Ga_2^-$ (2-		dred	3	90°	2.38	1.7	here
R ₂ Ga ₂	[g]	dred	6	_	2.34	2	[14]
R_4Ga_2 .	Tip	dark	3	15.5°	2.34	2	[12]
7 2	Disyl	blue	3	0°	2.40	1.5	[6a]
$R_2Ga_2^{2-}$	[h] (dred	4	180°	2.32	2	[24]
2 2		Three Ga	atoms				
R_4Ga_3 (3)	R*	dgreen	3+4	_	$2.54^{[i]}$	1	here
$R_4Ga_3^-(3^-)$) R*	dblue	3	_	$2.54^{[i]}$	1	here
Ga ₃ I ₅ D ₃	PEt ₃	yellow	4	_	2.46	1.5	[18]
$R_3Ga_3^{2-}$	[k]	dred	4	_	2.44	1.5	[25]

 $^{[a]}$ Disyl = (SiMe₃)₂CH; Pip = 2,2,4,4-Me₄C₅H₆N; Tip = 2,4,6-iPr₃C₆H₂; Mes = 2,4,6-Me₃C₆H₂; Mes_F = 2,4,6-(CF₃)₃C₆H₂; R* = tBu₃Si; Mes* = 2,4,6-tBu₃C₆H₂; R' = (SiMe₃)₃Si; Diox = dioxane; Py = pyridine. $-^{[b]}$ d = deep, dark; l = light. $-^{[c]}$ st = staggered; e = eclipsed. $-^{[d]}$ R = [-tBuN-SiMe(NtBu)-NtBu-SiMe(NtBu)-]. $-^{[e]}$ Ga-Ga bond lengths slightly depend on the counter ion. $-^{[f]}$ The gallium(II) chalcogenides GaY also contain Ga-Ga groups with tetracoordinated Ga atoms and Ga-Ga distances of 2.447/2.456/2.437 Å (Y = S/Se/Te). $-^{[g]}$ R = 2,4-bis(trimethylsilyl)-2,4-dicarba-nido-hexaboryl. $-^{[h]}$ R = 2,6-(Tip)₂C₆H₃. $-^{[i]}$ Mean value of the two shorter Ga-Ga bonds (cf. Scheme 2). $-^{[k]}$ R = 2,6-(Mes)₂C₆H₃.

As to Table 1, this "coordination effect" is or might be observed by going from $R_2Ga_2Hal_2$ ($R=2,4,6-tBu_3C_6H_2$) to $[R_2Ga_2Hal_4]^-$ [$R=Si(SiMe_3)_3$] or from Ga_2Hal_4 (unknown) to $[Ga_2Hal_6]^{2-}$.

Unlike triorganylgallium compounds R_3Ga with gallium in oxidation state III, which have been known for a long time, [27] organylgallium compounds R_mGa_n with gallium in oxidation states < III were synthesized and characterized only very recently. This is due to their high tendency of decomposition into R_3Ga and Ga. According to the follow-

ing equation, the disproportionation of the mentioned gallium cluster compounds R_mGa_n — where R is not only an organic but also an inorganic group [e.g. $(SiMe_3)_2N]$ — may proceed over intermediates $R_{m'}Ga_{n'}$ with constantly decreasing m'/n' ratio.

$$R_mGa_n \xrightarrow{\text{over } R_{m'}Ga_{n'}} R_3Ga/Ga \text{ or } R_2/Ga$$
 $(m'/n' < m/n)$

Substituents R with greater bulkiness may inhibit the full scale of this disproportionation at a point which will be specifically determined by the nature of R and the reaction conditions (suitable donors that coordinate with Ga atoms of R_mGa_n may also have a directing effect). This is illustrated by the discussed reaction of gallium trihalides Ga-Hal₃ with supersilylsodium NaR*, which according to Scheme 2 leads via R*₂GaCl to the digallaryl R*₃Ga₂. (2). The latter is metastable at room temperature, but at higher temperatures disproportionates further into R* and the tetrahedro-tetragallane R*4Ga4 (4; cf. Scheme 2). Obviously, the Ga₄ tetrahedrane in R*₄Ga₄ is completely shielded by four supersilyl groups, leading to a high thermal stability of the Ga cluster compound (see above). In accordance with this, the trigallaryl $R*_4Ga_3$: (3) finally – at elevated temperatures – disproportionates into R* and 4 (cf. Scheme 2).^[6] Certainly, 4 reacts further with Na in THF under formation of $Na_2Ga_4R*_4 \times 2THF^{[28]}$

It is worth mentioning in this context that gallium monohalides GaHal react with supersilylsodium in a different manner to gallium trihalides. Products are the gallanides $R^*{}_6Ga_{10}^-$ and $R^*{}_6Ga_{13}^-$ besides $R^*{}_4Ga_4^{[17]}$ as well as the gallanes $R^*{}_8Ga_{18}$ and $R^*{}_8Ga_{22}^{[29]}$ Noticeable, in the course of reactions of NaR* with GaHal3 the products obtained have equal or more supersilyl groups than Ga atoms, whereas reactions of NaR* with GaHal lead to products with equal or less supersilyl groups than Ga atoms. Certainly, this is due to different reaction paths, the nature of which have to be investigated.

Some insights into the mechanisms of the building up of clusters come from the isolated primary and secondary products of the reaction of NaR* with GaHal₃. Here, the efficiency of supersilylsodium for acting as reducing agent $(R*_2GaCl + NaR* \rightarrow R*_2Ga^{\cdot} + NaCl + R* and R*_3Ga^{\cdot})$ + NaR* \rightarrow NaGa₂R*₃ + R*) as well as the tendency of the gallium cluster compounds for elimination of R* $(R_4^*Ga_2 \rightarrow R_3^*Ga_2 + R^*)$ or transfering group R^*Ga $(2 \operatorname{Ga_2R}^*_3^- \to \operatorname{GaR}^*_2^- + \operatorname{Ga_3R}^*_4^-)$ is important. Certainly, supersilylgallium R*Ga also plays an essential part in the reaction of NaR* and GaHal. The gallylene, which is obviously obtained by supersilylanidation of GaHal, may combine with GaHal, whereby dehalogenations as well as R* eliminations of the formed Ga cluster compounds will produce "naked" Ga atoms in the cluster. These latter clusters may themselves be reduced by NaR* to anions, which may react with GaHal by introducing new "naked" Ga atoms into the Ga cluster framework.

Experimental Section

All experiments were carried out in flame-dried glass apparatus with standard Schlenk techniques under dry argon or nitrogen. During all manipulations, air and moisture were strictly excluded. The solvents (pentane, heptane, THF, C₆D₆, C₆D₁₂) were distilled from sodium/lead or sodium/benzophenone. Available for use were: GaCl₃, Na, Me₃SiCl, 18-crown-6, TCNE (tetracyanoethylene). The following compounds were synthesized according to literature procedures: NaR*×2THF,^[5] R*₂GaCl,^[30] NaC₁₀H₈ (sodium naphthalenide) in THF.^[31] – For NMR spectra a Jeol GSX-270 (¹H/¹³C/²⁹Si: 270.17/67.94/53.67 MHz) and Jeol EX-400 (¹H/¹³C/²⁹Si: 399.78/100.54/79.43 MHz) were available. The ²⁹Si NMR spectra were recorded with the INEPT or DEPT pulse sequence using empirically optimized parameters for the mentioned groups. – The EPR spectra were recorded with a Bruker System ESP 300.

Syntheses and Reactions of 2. – (i): A solution of $NaR*\times 2THF$ (0.826 mmol) in heptane (15 mL) was added dropwise to a solution of $R*_2GaCl$ (0.208 g, 0.413 mmol) in heptane (10 mL) at -78 °C. As the mixture warmed to room temperature, the color of the initially formed yellow solution (R*2GaCl, NaR*) changed to green, and finally to intense blue. According to ¹H NMR (exchange of heptane by C_6D_6) and to EPR, the solution contained $(R^*)_2$ and the radical 2. The former substance is not observed by EPR, the latter not in NMR. After removal of the volatile components (ca. 10^{-3} mbar), the residue was placed in pentane (10 mL), the white precipitate (NaCl) removed by filtration, and the resulting solution reduced in volume to about 5 mL. Within 0.5 d at -23 °C, colorless crystals of (R*)2 precipitated which were removed by decanting the blue solution. Black-blue crystals of air- and water-sensitive 2 which at about 80 °C thermolize under formation of the tetrahedrane 4^[4] and react with Na or NaR* in organic solvents under formation of $Na(THF)_3^+ \cdot 2^-$ – form from the mother liquor after 5 d at -23 °C (ca. 10%). The identification of products results from comparison with authentic samples of $(R^*)_2$ [5] and 2.[3] – (ii): The radical 2 is also formed from GaCl₃ and NaR*×2THF (molar ratio 1:3) in heptane.^[3] In addition, the digallaryl 2 seems – according to EPR - to be the first product of the oxidation of 2 with oxygen. Finally, 2 probably is formed as first product of the reaction of $Na(THF)_2^+ \cdot 2^-$ in pentane with R*Br (see below).

Syntheses and Reactions of Na(THF)₃⁺ 2⁻. - (i): A solution of NaR*×2THF (3.58 mmol) in THF (6 mL)/pentane (10 mL) was added dropwise to a solution of R*2GaCl (0.902 g, 1.79 mmol) in pentane (50 mL). The color of the initially yellow solution (R*2-GaCl) changed to green and finally to dark-blue. According to ¹H NMR (exchange of pentane by C₆D₆), the solution contained $(R^*)_2$ [5] and Na(THF)₃ + **2** [molar ratio ca. 2:1; 2 R^*_2 GaCl + $3 \text{ NaR*} \rightarrow \text{Na}^+ \cdot 2^0 + 2 (\text{R*})_2 + 2 \text{ NaCl}$ besides unreacted NaR* ×2THF (all R*2GaCl consumed). After removal of the volatile components (ca. 10^{-3} mbar), the residue (now brown-red) was placed in pentane (50 mL), the precipitate (NaCl) removed by filtration, and the resulting dark-red solution reduced in volume to about 15 mL. Within 1 d at −23 °C, deep-red crystals of air- and water-sensitive Na(THF)₃ $^+\cdot$ **2** $^-$ (0.22 g; 0.26 mmol; 15%) formed from the solution, which reacted with Me₃SiCl and R*Br (see below). - ¹H NMR (C₆D₆, internal TMS): $\delta = 1.47$ (broad; 3 $SitBu_3$), 1.34/3.42 (m/m; 6- $CH_2CH_2O/6$ - CH_2CH_2O). - $^{13}C\{^{1}H\}$ NMR (C_6D_6 , internal TMS): $\delta = 24.3/25.3$ (6- $CMe_3/6-CMe_3$), 33.2/33.9 (3-CMe₃/3-CMe₃), 25.6/67.9 (6-CH₂CH₂O/6-CH₂CH₂O). $- {}^{29}\text{Si}\{{}^{1}\text{H}\}\ \text{NMR}\ (\text{C}_{6}\text{D}_{6}, \text{ external TMS}): \delta = 37.1\ (2\ \text{Si}t\text{Bu}_{3}),\ 54.3$ (SitBu₃). – X-ray structure analysis: cf. Figure 2. – It has not yet been possible to obtain a satisfactory elemental analysis. - (ii): NaC₁₀H₈ (0.272 mmol) in THF (5 mL) was added dropwise to a solution of R*2GaCl (0.092 g; 0.181 mmol) in heptane (10 mL) at -78 °C. The color of the initially yellow solution (R*₂GaCl) changed to violet (2) and finally brown-red [Na(THF)₃+·2-]. After 6 h, the reaction mixture was warmed to room temperature. According to ¹H NMR (exchange of THF/pentane by C₆D₆) the solution contained $(R^*)_2$ [5] and the digallanide Na(THF)₃+·2⁻ [molar ratio 1:2; $2 R_2^* GaCl + 3 Na \rightarrow Na^+ \cdot 2^- + 0.5 (R^*)_2 + 2 NaCl$]. After removal of the volatile components (ca. 10^{-3} mbar), the residue (brown-red) was placed in heptane (30 mL), the precipitate (NaCl) removed by filtration, and the resulting dark-red solution reduced in volume to 5 mL. Within 1 d at -23 °C, deep-red crystals of $Na(THF)_3^+$ **2**⁻ (0.064 g; 0.066 mmol; 73%) formed from the solution [cf. (i) for characterization]. - (iii): In an NMR tube the radical 2 (ca. 0.015 g; 0.02 mmol) and Na (ca. 0.9 mmol) in C_6D_6 (0.6 mL) were heated for 1 d at 60 °C. The color of the initially intensive blue solution changed finally to red. According to ¹H NMR it contained $(R^*)_2$ [5] besides the digallanide Na⁺ 2⁻ (doubtless as the benzene adduct). - ¹H NMR (C₆D₆, internal TMS): $\delta = 1.421$ (s; 2 SitBu₃), 1.434 (s; SitBu₃). – (iv) Reaction of Na(THF)₃⁺ 2⁻ with Me₃SiCl: A solution of Me₃SiCl (0.220 mmol) in heptane (5 mL) was added dropwise to a solution of Na(THF)₃⁺ 2^- (0.215 g; 0.220 mmol) in heptane (10 mL). The color of the initially formed dark-blue solution of the starting material changeed to light-red. After removal of the volatile components at -78 °C and ca. 10^{-3} mbar, the residue was warmed to room temperature and dissolved in C₆D₆. According to NMR spectra, Na(THF)₃⁺ 2 has exclusively reacted under formation of a new substance, the nature of which is probably the digallane R*2Ga-GaR*(SiMe3). $- {}^{1}\text{H NMR (C}_{6}\text{D}_{6}, \text{ internal TMS): } \delta = 0.173 \text{ (s; SiMe}_{3}), 1.258 \text{ (s;}$ $SitBu_3$), 2.277 (s; 2 $SitBu_3$). – $^{13}C\{^{1}H\}$ NMR (C_6D_6 , internal TMS): $\delta = 1.29 \text{ (SiMe}_3), 25.4/25.6 (6-CMe}_3/3-CMe}_3), 32.4/33.9 (6-CMe)_3/3-CMe_3/3-CM$ $CMe_3/3$ - CMe_3). - ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ = 19.41 (SiMe₃), 44.80 (SitBu₃), 48.42 (2SitBu₃).

Syntheses and Reactions of $[Na(18-C-6)(THF)_2]^+[3]^-$. – (i): To a solution of Na(THF)₃⁺ 2^0 (0.147 g; 0.15 mmol) in 0.6 mL of C₆D₆ at room temperature was added 18-crown-6 (0.053 g; 0.20 mmol). The color of the initially red solution immediately changed to darkblue. According to NMR recorded after 20 h, the trigallanide $[Na(18-C-6)(THF)_2]^+[3]^-$ had formed. From this solution at 5 °C within 2 weeks dark-blue, air- and moisture-sensitive crystals of [Na(18-C-6)(THF)₂]⁺[3]⁻, insoluble in pentane and soluble in benzene or THF, and which may be oxidized by R*Br or TCNE under formation of the radical 3 (see below), were obtained. – ¹H NMR $(C_6D_6, internal TMS)$: $\delta = 1.532 (broad; 2 SitBu₃), 1.621 (broad;$ 2 SitBu₃), 1.439/3.545 (m/m; 4-CH₂CH₂O/4-CH₂CH₂O), 3.326 (18-C-6). $- {}^{13}C\{{}^{1}H\}$ NMR (C₆D₆, internal TMS): $\delta = 22.7/24.9$ (6- $CMe_3/6-CMe_3$), 32.2/35.0 (6- $CMe_3/6-CMe_3$), 25.8/67.8 (4- $CH_2CH_2O/4$ - $CH_2CH_2O)$, 70.0 (18-C-6). - ²⁹Si{¹H} NMR (C₆D₆, external TMS): $\delta = 42.0/42.3/53.2$ (SitBu₃/SitBu₃/2 SitBu₃). - Xray structure analysis: cf. Figure 3. – It has not yet been possible to obtain a satisfactory elemental analysis. - (ii): Deep-blue [Na(18-C-6)(THF)₂]⁺[3]⁻ was formed as an insoluble precipitate by addition of 18-crown-6 (0.010 g; 0.038 mmol) to a red solution of Na(THF)₃ $^{+}$ **2** $^{-}$ (0.033 g; 0.034 mmol) in pentane (3 mL) at room temperature, which dissolved after addition of THF (1 mL). From this solution in 5 d at -23 °C dark-blue crystals of the trigallanide $[Na(18-C-6)(THF)_2]^+[3]^-$ were obtained. – (iii): Obviously, the deep-blue trigallanide 3 formed by reduction of the trigallanyl 3 (see below) in THF with NaC₁₀H₈ in THF at room temperature.

Syntheses and Reactions of 3. - (i): A solution of R*Br (0.672 g; 2.41 mmol) in pentane (10 mL) was added dropwise to a solution

Table 2. Selected parameters of the X-ray structure analyses of the compounds $R_4^*Ga_3$: (3), $Na(THF)_3^+Ga_2R_3^*$ (M^+ 2⁻) and $[Na(18-C-6)(THF)_2]^+[Ga_3R_4^*]^-$ (M^+ 3⁻)

	3	$M^{+} 2^{-}$	$M^{+} 3^{-}$	
Formula	C ₄₈ H ₁₀₅ Ga ₃ Si ₄	C ₄₈ H ₁₀₅ Ga ₂ NaO ₃ Si ₃	C ₆₈ H ₁₄₈ Ga ₃ NaO ₈ Si ₄	
$M_{ m r}$	1006.92	977.05	1438.45	
System	monoclinic	triclinic	monoclinic	
Space group	C2/c	$P\bar{1}$	P2(1)/c	
$a[\mathring{A}]$	21.278(2)	12.592(5)	14.9998(2)	
b [Å]	12.692(1)	12.6572(5)	20.5701(1)	
c [Å]	23.853(2)	19.6557(8)	30.0658(3)	
α [Å]	90	80.768(1)	90	
β[Å]	90.212(2)	89.154(1)	92.058(1)	
γ [Å]	90	68.760(1)	90	
$V[\mathring{A}^3]$	6442(1)	2879.0(2)	9270.7(2)	
Z^{\prime}	4	2	4	
D [Mg/m ³]	1.082	1.127	1.108	
μ [mm ⁻¹]	1.012	1.039	0.967	
F(000)	2280	1064	3360	
Index range	$-27 \le h \le 27$	$-13 \le h \le 13$	$-16 \le h \le 16$	
	$-15 \le k \le 15$	$-13 \le k \le 13$	$-22 \le k \le 22$	
	$-24 \le l \le 30$	$-21 \le l \le 21$	$-32 \le l \le 32$	
2Θ [°]	3.42 - 58.42	3.48 - 46.50	13.62-46.52	
Reflections	18377	12733	36480	
unique	5554	6645	9921	
observed ^[a]	3821	6288	8007	
R(int.)	0.0540	0.0265	0.0427	
$x/y^{[b]}$	1/1	0.1067/	0.1209/	
		4.7218	90.4156	
GOOF	1.044	1.076	1.034	
$R1^{[a]}$	0.0532	0.0379	0.1016	
wR2	0.1458	0.1256	0.2476	
[c]	0.710	0.597	5.696	

[a] F > 4F(F). - [b] $w^{-1} = F^2F_0^2 + (xP)^2 + vP$; $P = (F_0^2 + 2F_c^2)/3$. - [c] Max. electron density [e/Å³].

of Na(THF)₃⁺ 2^0 (2.353 g; 2.41 mmol) in pentane (15 mL) at -100°C. After 5 h, the mixture was warmed to room temperature. The color of the initially formed deep-blue solution changed finally to deep-green. According to ¹H NMR (exchange of heptane by C₆D₆) and EPR, the solution contained (R*)2 [5] and the radical 3 (the former substance not seen in EPR, the latter not seen in NMR). After removal of the volatile components (ca. 10^{-3} mbar), the residue was placed in pentane (30 mL) and the precipitate (NaBr) removed by filtration. Within 2 months at -23 °C, deep-green, airand moisture-sensitive crystals of 3 (0.412 g; 0.41 mmol; 36%) were formed. - NMR spectra: Not observable. - EPR spectrum: cf. main section. - X-ray structure analysis: cf. Figure 1. - UV/Vis (heptane): $\lambda_{\text{max}} = 610 \text{ nm.} - \text{(ii)}$: The deep-green radical 3 was also formed from [Na(18-C-6)(THF)₂]⁺[3]⁻ (0.086 g; 0.060 mmol) and R*Br (0.027 g; 0.090 mmol) in C₆D₆ (0.8 mL) within a few days as well as from $[Na(18-C-6)(THF)_2]^+[3]^-$ (0.072 g; 0.050 mmol) and TCNE (0.006 g; 0.05 mmol) in C_6D_6 (0.8 mL) at room temperature immediately. In both cases, the color of the initial dark-blue solutions changed to deep green [cf. (i) for characterization]. - (iii) Thermolysis of 3: At 25 °C, deep-green 3 in heptane decomposed very slowly into black-blue 2 (observed in EPR) and dark-violet R*4Ga4 (observed in NMR).[6] The mentioned decomposition was complete by heating 3 (0.170 g; 0.169 mmol) for 17 h in heptane (2 mL) at 45 °C. After removal of the volatile components (ca. 10⁻³ mbar) and dissolving the residue in pentane (1.5 mL), within 3 d at $-23 \, ^{\circ}\text{C}$ dark-blue crystals of the radical 2 were obtained (for another synthesis cf. above, for characterization cf. ref.^[3]). As 2 itself decomposed at higher temperatures under formation of the tetrahedrane 4 besides (R*)2 (see above), the thermolysis of dark-green 3 (0.151 g; 0.150 mmol) in heptane (5 mL) at 100 °C led within 3 h exclusively to dark-violet 4. After removal of the volatile components (ca. 10^{-3} mbar) and dissolving the residue in pentane (3 mL), within 3 d at -23 °C dark-violet crystals of 4 (0.075 g; 0.07 mmol; 44%) were obtained (for another synthesis and for characterization see ref.^[4]). Compound 4 is itself very thermostable; the tetrahedrane remains almost undecomposed even after heating a solution in C_6D_{12} for 5 d at 100 °C (the NMR spectrum shows only a small amount of R*D formed). As a solid, 4 does not decompose below 322 °C (m.p.).

X-ray Structure Determinations: Siemens SMART Area-detector, Mo- K_{α} with $\lambda = 0.71073 \text{ Å}$, $T = 163(2) \text{ or } 193(2) \text{ K } (R*_4Ga_2\cdot)$, graphite monochromator, image plate detector, fixed on glass fibre, crystals mounted in perfluoropolyether oil. - Structure determination: The structures were solved by direct methods, SHELX-93. All non-hydrogen atoms were refined anisotropically and H atoms were included in the refinement at calculated positions with a riding model and fixed isotropic U_i values. There is still a large peak in $[Na(18-C-6)(THF)_2]^+[Ga_3R^*_4]^-$ of 5.70 e/Å³, 1.02 Å from Ga³, that could be due to strong H...Ga and C...Ga contacts between one peripheral methyl group of R*2Ga and the anionic Ga atom of the trigallanide [R*2Ga-GaR*-GaR*]. The structures of the compounds are shown in Figures 1, 2, and 3, and crystallographic details are summarized in Table 2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-152470 (3), -152469 $[Na(THF)_3^+ 2^-]$, -152583 { $[Na(18-C-6)(THF)_2]^+[3^-]$ }. Copies of

FULL PAPER

this data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds of Chemische Industrie for their generous financial support.

- [1] N. Wiberg, T. Blank, W. Kaim, B. Schwerdeski, G. Linti, Eur. J. Inorg. Chem. 2000, 1475.
- [2] N. Wiberg, K. Amelunxen, T. Blank, H. Nöth, J. Knizek, Organometallics 1998, 17, 5431.
- [3] N. Wiberg, K. Amelunxen, H. Nöth, H. Schwenk, W. Kaim, A. Klein, T. Scheiring, Angew. Chem. 1997, 109, 1258; Angew. Chem. Int. Ed. Engl. 1997, 36, 1213.
- [4] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, W. Ponikwar, H. Schwenk, J. Organomet. Chem. 1999, 574, 246.
- [5] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 1997, 542, 1.
- [6] In addition, R*₆Ga₈ is formed in low yield (*Z. Naturforsch., B*, in preparation). [^{6a]} W. Uhl, U. Schütz, W. Kaim, E. Waldhör, *J. Organomet. Chem.* 1995, 501, 79.
- [7] W. Kaim, Coord. Chem. Rev. 1987, 76, 187.
- [8] J. A. Weil, J. A. Bolton, J. E. Wertz, Electron Paramagnetic Resonance, Wiley, New York, 1994.
- [9] W. Uhl, K. W. Klinkhammer, M. Layh, W. Massa, Chem. Ber. 1991, 124, 279.
- [10] W. Uhl, M. Layh, T. Hildenbrand, J. Organomet. Chem. 1989, 364, 289.
- [11] G. Linti, R. Frey, M. Schmidt, Z. Naturforsch., Teil B 1994, 49, 958.
- [12] X. He, R. A. Bartlett, M. M. Olmstead, K. Ruhland-Senge, B. E. Sturegeon, P. P. Power, Angew. Chem. 1993, 105, 761; Angew. Chem. Int. Ed. Engl. 1993, 32, 717.
- [13] R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bernd, C. J. Carrano, J. Am. Chem. Soc. 1993, 115, 2070.
- [14] A. K. Saxena, H. Zhang, J. A. Maguire, N. S. Hosmane, A. H. Cowley, *Angew. Chem.* 1995, 107, 378; *Angew. Chem. Int. Ed. Engl.* 1995, 34, 332 and ref. cited herein.

- [15] M. Veith, F. Gotting, S. Becker, V. Huch, J. Organomet. Chem. 1991, 406, 105.
- [16] A. H. Cowley, A. Decken, C. A. Olazabal, J. Organomet. Chem. 1996, 524, 271.
- [17] M. Kehwald, W. Köstler, A. Rodig, G. Linti, T. Blank, N. Wiberg, *Organometallics*, 2001, 20, 860, and ref. cited herein.
- [18] A. Schnepf, C. Doriat, E. Möllhausen, H. Schnöckel, Chem. Commun. 1997, 21, 2111.
- [19] J. C. Beamish, R. W. H. Small, I. J. Worrall, *Inorg. Chem.* 1979, 18, 220; R. W. H. Small, I. J. Worrall, *Acta Crystallogr. B* 1982, 38, 250
- [20] J. C. Beamish, A. Boardman, R. W. H. Small, I. D. Worrall, Polyhedron 1985, 4, 983; R. W. H. Small, I. J. Warrall, Acta Crystallogr. B 1982, 38, 86.
- R. L. Brown, D. Hall, J. Chem. Soc., Dalton Trans. 1974, 988;
 M. Khan, C. Oldham, M. J. Taylor, D. G. Tuck, Inorg. Nucl. Chem. Lett. 1980, 16, 469.
- [22] H. J. Cunning, D. Hall, C. E. Wright, Cryst. Struct. Commun. 1974, 3, 107; W. Hönle, G. Gerlach, W. Weppner, A. Simon, J. Solid State Chem. 1986, 61, 171; W. Hönle, A. Simon, Z. Naturforsch. B 1986, 41, 1391.
- [23] G. Gerlach, W. Hönle, A. Simon, Z. Anorg. Allg. Chem. 1982, 486. 7.
- [24] J. Su, X.-W. Li, R. C. Crittendon, G. H. Robinson, Z. Anorg. Allg. Chem. 1997, 36, 5471.
- [25] X.-W. Li, W. T. Pennington, G. H. Robinson, J. Am. Chem. Soc. 1995, 117, 7578; X.-W. Li, Y. Xie, P. R. Schreiner, K. D. Cripper, R. C. Crittendon, C. F. Campena, H. F. Schaeter, G. H. Robinson, Organometallics 1996, 15, 3798.
- [26] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101st ed., DeGruyter, Berlin, 1995, p. 1839.
- [27] A. J. Downs (Ed.), Chemistry of Aluminum, Gallium, Indium and Thallium, Chapman and Hall, London, 1993.
- [28] N. Wiberg, T. Blank, H. Schnöckel, F. Möllhausen, unpublished results.
- [29] A. Donchev, A. Schnepf, G. Stößer, E. Baum, H. Schnöckel, T. Blank, N. Wiberg, Chem. Eur. J., in press.
- [30] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek, I. Krossing, Z. Naturforsch., Teil B 1998, 53, 333.
- [31] J. L. Wardell, in: Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone), Pergamon, Oxford 1982, vol. 1, p. 109.

Received November 21, 2000 [I00445]